详细内容 当前位置:首页 > 科学研究 > 学术交流
【理学院讲坛】数学系学术报告
发布时间:2020-07-10【告诉好友】 【关闭窗口】

  时间:2020/7/15 08:30-16:30

  腾讯会议ID:184 504 216

  会议主题:数学系学术报告

  会议时间:2020/7/15 08:30-15:30

  点击链接入会,或添加至会议列表:

  https://meeting.tencent.com/s/eyVFv6TqtBEB  

  (一)报告人:刘佳堃 教授  澳大利亚卧龙岗大学

  报告题目:Introduction to Optimal Transportation

  报告摘要:

  In this talk,we first give a brief introduction to the optimal transport problem,and then its extension to nonlinear case with application in geometric optics.Last,we introduce some recent results on the optimal partial transport problem,which is based on joint work with Shibing Chen (USTC) and Xu-Jia Wang (ANU).

  (二)报告人:陈世炳 教授  中国科学技术大学

  报告题目:On the four vertex theorem for curves on locally convex

  报告摘要:

  The classical four vertex theorem describes a fundamental property of simple closed planar curves.It has been extended to space curves,namely a smooth simple closed curve in $\mathbb{R}^3$ has at least four points with vanishing torsion if it lies on a convex surface.More recently,Ghomi extended this property to curves lying on locally convex surfaces.In this talk we will discuss an interesting approach using the regularity theory of Monge-Ampere equations.This is based on a joint work with Xu-jia Wang and Bin Zhou.

 

  (三)报告人:杨军 教授  广州大学

  报告题目:Symmetric vortices for two-component $p$-Ginzburg-Landau systems 

  报告摘要:Given $p>2$ for the following  coupled $p$-Ginzburg-Landau model in $\mathbb{R}^2$

   -\Delta_p u^+ +\Big[A_+\big(|u^+|^2-{t^+}^2\big)  +A_0\big(|u^-|^2-{t^-}^2\big)\Big]u^+=0,

  -\Delta_p u^- +\Big[A_-\big(|u^-|^2-{t^-}^2\big)  +A_0\big(|u^+|^2-{t^+}^2\big)\Big]u^-=0,

  with the constraints

  A_+, A_->0,  A_0^2<A_+A_- and t^+, t^->0,

  we consider the existence of symmetric vortex solutions $u(x)=\big(U_p^+(r)e^{in^+\theta},U_p^-(r)e^{in^-\theta}\big)$ with given degree $(n^+, n^-)\in \mathbb {Z}^2$, and then prove the uniqueness and regularity results for

the vortex profile $(U_p^+, U_p^-)$ under more constraint of the parameters. Moreover, we also establish the stability result

for second variation of the energy around this vortex profile when we consider the perturbations in a space of

radial functions.

      
      
【关闭窗口】