详细内容 当前位置:首页 > 科学研究 > 学术交流
【明理讲坛】数学系学术报告
发布时间:2020-07-19【告诉好友】 【关闭窗口】

  时间:2020/7/23 08:30-12:30

  腾讯会议ID:865 981 315

  会议主题:数学系学术报告

  会议时间:2020/7/23 08:30-12:30

  点击链接入会,或添加至会议列表:

  https://meeting.tencent.com/s/SAes2Wc86TSZ 

  报告人:郭真华 教授  西北大学

  报告题目:Global existence  of weak solutions for a flocking particles in an inhomogeneous  non-Newtonian flows

  报告摘要:

  This paper is dedicated to the construction of global weak solutions to the Naiver-Stokes-Vlasov equations for particles coupled with an inhomogeneous non-Newtonian fluid with the stress tensor of a power-law structure for $p\geqslant\frac{12}{5}$ in the three-dimensional spaces.The coupling is performed through a drag force in the fluid equations and the acceleration in the Vlasov equation.An intial-boundry value problem is  studied in a  bounded domain  with large intial data.the existence of global weak solution is established through an approximation scheme,with the aid of  a truncation method and  a monotone operator technique.

  报告人:段仁军 教授  香港中文大学

  报告题目:Lower regularity global solutions to the non-cutoff Boltzmann equation

  报告摘要:In this talk I will present a recent work on the existence of global small-amplitude mild solutions to the Boltzmann equation without angular cutoff. We introduce a new function space with low regularity in the spatial variable to treat the problem in cases when the spatial domain is either a torus, or a finite channel with boundary. For the latter case, either the inflow boundary condition or the specular reflection boundary condition is considered. An important property of the function space is that the velocity distribution function is in the Wiener algebra in the spatial variables. Additionally we study the large-time behavior of solutions for both hard and soft potentials, and further justify the property of propagation of regularity of solutions in the spatial variables.

      
      
【关闭窗口】