详细内容 当前位置:首页 > 科学研究 > 学术交流
【明理讲坛】数学中心“椭圆型偏微分方程与非线性泛函分析”报告会
发布时间:2020-12-01【告诉好友】 【关闭窗口】

  报告时间:2020.12.08 下午14:30-17:30

  会议主题:贻民预定的会议

  会议时间:2020/12/08 13:30-18:00

  点击链接入会,或添加至会议列表:

  https://meeting.tencent.com/s/S2UKX7J9YpTM

  会议 ID:814 932 205

  会议密码:123456

  (一)报告人:张彬林山东科技大学

  报告题目:Kirchhoff-type fractional Laplacian: some existence results and open problems 

  报告摘要:In this talk, we present two topics on Kirchhoff-type fractional Laplacian problems: (i) On existence and multiplicity of solutions for Kirchhoff-type fractional Laplacian problems via critical groups; (ii) On existence and uniqueness of solutions for strong singular Kirchhoff-type fractional Laplacian problems. It is worth mentioning that these kinds of problems possess significant difficulties caused by the interactions between the Kirchhoff term and the nonlocal feature of the fractional Laplacian. 

  报告人简介:

  张彬林,山东科技大学教授,博士生导师2013年博士毕业于哈尔滨工业大学,先后在意大利地中海研究中心南开大学陈省身数学研究所做过两站博士后。当前的主要研究兴趣变分和拓扑方法及其在数学物理问题中的应用在《Calc. Var. PDEs》、《Nonlinearity》、《J. Differential Equations》、《Disc. Contin. Dyn. Syst.》、Science China-Mathematics重要期刊上发表学术论文90余篇现任Advances in Nonlinear Analysis, Complex Variables and Elliptic Equations, Boundary Value Problems期刊编委。

  (二)报告人:梁四化长春师范大学)

  报告题目:Sign-changing solutions of critical fractional Kirchhoff problems with logarithmic nonlinearity

  摘要:

  In this paper, we are concerned with the existence of least energy sign-changing solutions for the fractional Kirchhoff problem with logarithmic and critical nonlinearity. By using constraint variational methods, topological degree theory and quantitative deformation arguments, we prove that the existence, energy estimates and the convergence property of the least energy sign-changing solution for this kind of problem.

  梁四化,理学博士,硕士生导师,长春师范大学研究生院副院长,吉林省运筹学会理事和美国《Mathematical Reviews》杂志评论员,在《Calc. Var. PDEs》、《Nonlinearity》、《Adv. Differential Equations》、《 Z. Angew. Math. Phys. 》等重要期刊上发表学术论文68

      
      
【关闭窗口】