高飞
更新时间:2023-09-21姓 名:高飞
学 位:博 士
职 称:教 授
研究方向:分数阶系统、大数据分析、神经网络、机器学习、群智能算法等
联系方式:gaof@whut.edu.cn
电话:18971097697
个人主页:https://orcid.org/0000-0003-2266-7263
1. 简介
高飞 博士,武汉理工大学理学院数学系应用数学专业教授(2013.9-),居里夫人Marie-Curie Fellow,硕士生导师,归国留学博士后、博士后出站。从事涉及神经网络、机器学习、分数阶系统、群智能算法等领域的科学研究工作,并将它们应用于各种实际问题。
2. 研究生招生
数学专业:应用数学、基础数学——机器学习、分数阶偏微分方程、大数据分析、神经网络、GPT与大语言模型、社交网络、无人机应用、混沌系统、随机微分方程、最优化理论与方法、
统计专业(学硕及专硕):大数据分析、神经网络、机器学习、GPT与大语言模型、社交网络、无人机应用、混沌系统、随机微分方程、数理统计学相关
3. 概述
高飞博士在国内外重要学术期刊及高水平国际会议上发表论文60+篇,30+篇被三大检索收录。获得韩国政府BK21奖学金(2008.3-2009.3)和欧盟第七框架项目(2011.11-2012.10)资助,分别在韩国高等科学与技术研究院未来超越人类智能实验室、KAIST电气工程与计算机科学系、挪威科技大学NTNU电子与电信系从事计算智能及智能控制的博士后研究工作。
近年来参与国家自然科学基金重点项目(2014-2016)和面上项目(2013-2016)各一项;主持完成国家自然科学基金1项(2007),中国博士后基金1项(2008-2009),主持湖北省自然科学基金2项(2009-2011,2018-2019)。
国家精品课程<经济数学——高等数学B>主讲教师,自2002年以来进行高等数学A、B(含双语、纯英文教学)、微积分、概率统计、线性代数、复变函数与积分变换、最优化理论与方法、常微分方程、数值计算等课程的教学与研究。
4. 教育经历
2006.6毕业于武汉理工大学获博士学位;
2002.6毕业于武汉大学数学与统计学院应用数学专业,获理学硕士学位,获得“武汉大学数学学子奖”,并于2005年获得获湖北省优秀硕士论文;
1999.6在武汉大学数学与计算机科学学院获理学学士学位。
5. 科研与学术工作经历
2013/09 - 至今,武汉理工大学,理学院数学系,教授
2011/11–2012/10,挪威科技大学(NTNU),信息科技与数学及电子工程学院, Marie Curie Fellow博士后(欧盟Marie Curie COFUND项目资助)
2008/03–2009/03,韩国科学技术研究院(KAIST),电子系,博士后(韩国Brain Korea 21 Century项目资助)
2007/12 - 2013/09,武汉理工大学,理学院数学系,副教授
2006/11–2009/07,武汉理工大学,建筑学院,博士后
2004/11 - 2007/11,武汉理工大学,理学院数学系,讲师
6. 项目
1、湖北省自然科学基金项目,2014CFB865、分数阶超混沌的非Lyapunov重构研究、2015/01-2016/12、3万、结题、主持
2、国家自然科学基金重大研究计划项目,91324201、非常规突发事件下社会群体心理与行为变化规律和机制、2014/01-2016/12、175万、结题、参与
3、“Marie COFUND of the European Commission - ABCDE 项目,欧盟n°246016、Mathematical analysis on bio-inspired communication network theory、2011/11-2012/10、1万欧元、结题、主持
4、教育部(中国)留学科研启动基金项目,20111j0032、基于量子细菌趋化算法的非Lyapunov分析方法研究、2010/06-2011/12、3万、已结题、主持7. 论文(60+)
7.1 2024年迄今
[1] Xu Y, Gao F. A novel higher-order Deffuant–Weisbuch networks model incorporating the Susceptible Infected Recovered framework[J]. Chaos, Solitons & Fractals, 2024, 182: 114778.
[2] Xie X, Gao F. The Delayed Effect of Multiplicative Noise on the Blow-Up for a Class of Fractional Stochastic Differential Equations[J]. Fractal and Fractional, 2024, 8(3): 127.
7.2 2024年之前
[1] ZHANG M, GAO F, YANG W, ZHANG H. Wildlife Object Detection Method Applying Segmentation Gradient Flow and Feature Dimensionality Reduction [J]. Electronics, 2023, 12(2).
[2] ZHANG M, GAO F, YANG W, ZHANG H. Real-Time Target Detection System for Animals Based on Self-Attention Improvement and Feature Extraction Optimization [J]. Applied Sciences-Basel, 2023, 13(6).
[3] GAO F, ZHAN H. Boundedness and exponential stabilization for time–space fractional parabolic–elliptic Keller–Segel model in higher dimensions [J]. Applied Mathematics Letters, 2023, 144: 108699.
[4] GUO L, GAO F, ZHAN H. Existence, uniqueness and L8-bound for weak solutions of a time fractional Keller-Segel system [J]. Chaos Solitons & Fractals, 2022, 160.
[5] ZHOU X, GAO F, FANG X, LAN Z. Improved Bat Algorithm for UAV Path Planning in Three-Dimensional Space [J]. Ieee Access, 2021, 9: 20100-16.
[6] GAO F, LI X, LI W, ZHOU X. Stability analysis of a fractional-order novel hepatitis B virus model with immune delay based on Caputo-Fabrizio derivative [J]. Chaos Solitons & Fractals, 2021, 142.
[7] GAO F, LI W-Q, TONG H-Q, LI X-L. Chaotic analysis of Atangana-Baleanu derivative fractional order Willis aneurysm system [J]. Chinese Physics B, 2019, 28(9).
[8] ZHANG J, GAO F, CHEN Y, et al. Parameter Identification of Fractional-order Chaotic System Based on Chemical Reaction Optimization; proceedings of the 2nd International Conference on Management Engineering, Software Engineering and Service Sciences (ICMSS), Wuhan, PEOPLES R CHINA, F 2018, Jan 13-15, 2018 [C]. 2018.
[9] GAO F, HU D-N, TONG H-Q, WANG C-M. Chaotic analysis of fractional Willis delayed aneurysm system [J]. Acta Physica Sinica, 2018, 67(15).
[10] MAO W, GAO F, DONG Y, LI W. A Novel Paradigm for Calculating Ramsey Number via Artificial Bee Colony Algorithm; proceedings of the 35th Chinese Control Conference (CCC), Chengdu, PEOPLES R CHINA, F 2016, Jul 27-29, 2016 [C]. 2016.
[11] GAO F, LI T, TONG H-Q, OU Z-L. Chaotic dynamics of the fractional Willis aneurysm system and its control [J]. Acta Physica Sinica, 2016, 65(23).
[12] GAO F, LEE T, CAO W-J, et al. Self-evolution of hyper fractional order chaos driven by a novel approach through genetic programming [J]. Expert Systems with Applications, 2016, 52: 1-15.
[13] GAO F, LEE X-J, FEI F-X, et al. Identification time-delayed fractional order chaos with functional extrema model via differential evolution [J]. Expert Systems with Applications, 2014, 41(4): 1601-8.
[14] GAO F, FEI F-X, LEE X-J, et al. Inversion mechanism with functional extrema model for identification incommensurate and hyper fractional chaos via differential evolution [J]. Expert Systems with Applications, 2014, 41(4): 1915-27.
[15] GAO F, LEE X-J, TONG H-Q, et al. Identification of Unknown Parameters and Orders via Cuckoo Search Oriented Statistically by Differential Evolution for Noncommensurate Fractional-Order Chaotic Systems [J]. Abstract and Applied Analysis, 2013.
[16] GAO F, LEE X-J, FEI F-X, et al. Parameter identification for Van Der Pol-Duffing oscillator by a novel artificial bee colony algorithm with differential evolution operators [J]. Applied Mathematics and Computation, 2013, 222: 132-44.
[17] GAO F, FEI F-X, TONG H-Q, et al. Bacterial Foraging Optimization Oriented by Atomized Feature Cloud Model Strategy; proceedings of the 32nd Chinese Control Conference (CCC), Xian, PEOPLES R CHINA, F 2013, Jul 26-28, 2013 [C]. 2013.
[18] GAO F, QI Y, BALASINGHAM I, et al. A Novel non-Lyapunov way for detecting uncertain parameters of chaos system with random noises [J]. Expert Systems with Applications, 2012, 39(2): 1779-83.
[19] GAO F, FEI F-X, XU Q, et al. A novel artificial bee colony algorithm with space contraction for unknown parameters identification and time-delays of chaotic systems [J]. Applied Mathematics and Computation, 2012, 219(2): 552-68.
[20] GAO F, FEI F-X, DENG Y-F, et al. A novel non-Lyapunov approach through artificial bee colony algorithm for detecting unstable periodic orbits with high orders [J]. Expert Systems with Applications, 2012, 39(16): 12389-97.
[21] XIAO J-Q, WU M, GAO F. Divergence points of self-similar measures satisfying the OSC [J]. Journal of Mathematical Analysis and Applications, 2011, 379(2): 834-41.
[22] GAO F, QI Y, YIN Q, XIAO J. Solving problems in chaos control though an differential evolution algorithm with region zooming; proceedings of the 2nd International Conference on Mechanical and Aerospace Engineering (ICMAE 2011), Bangkok, THAILAND, F 2012, Jul 29-31, 2011 [C]. 2012.
[23] GAO F, LEE J-J, LI Z, et al. Parameter estimation for chaotic system with initial random noises by particle swarm optimization [J]. Chaos Solitons & Fractals, 2009, 42(2): 1286-91.
[24] GAO F, GAO H, LI Z, et al. Detecting unstable periodic orbits of nonlinear mappings by a novel quantum-behaved particle swarm optimization non-Lyapunov way [J]. Chaos Solitons & Fractals, 2009, 42(4): 2450-63.
[25] GAO F, LI Z-Q, TONG H-Q. Parameters estimation online for Lorenz system by a novel quantum-behaved particle swarm optimization [J]. Chinese Physics B, 2008, 17(4): 1196-201.
[26] GAO F, LEE J-J, IEEE. A New Approach in Synchronization of Uncertain Chaos Systems Through Particle Swarm Optimization; proceedings of the 6th IEEE International Conference on Industrial Informatics, Daejeon, SOUTH KOREA, F 2008, Jul 13-16, 2008 [C]. 2008.
[27] GAO F, LEE J-J, IEEE. A New Approach in Discrete Chaos System Control by Differential Evolution Algorithm; proceedings of the 6th IEEE International Conference on Industrial Informatics, Daejeon, SOUTH KOREA, F 2008, Jul 13-16, 2008 [C]. 2008.
[28] GAO F, TONG H Q. Parameter estimation for chaotic system based on particle swarm optimization [J]. Acta Physica Sinica, 2006, 55(2): 577-82.
[29] GAO F, TONG H Q. A novel optimal PID tuning and on-line tuning based on particle swarm optimization; proceedings of the International Conference on Sensing, Computing and Automation, Chongqing, PEOPLES R CHINA, F Dec 2006, May 08-11, 2006 [C]. 2006.
[30] GAO F, TONG H, IEEE. Control a novel discrete chaotic system through Particle Swarm Optimization; proceedings of the 6th World Congress on Intelligent Control and Automation, Dalian, PEOPLES R CHINA, F 2006, Jun 21-23, 2006 [C]. 2006.
[31] GAO F, TONG H. UEAS: A novel united evolutionary algorithm scheme [M]//KING I, WANG J, CHAN L, WANG D L. Neural Information Processing, Pt 3, Proceedings. 2006: 772-80.
[32] GAO F, TONG H. Differential evolution: An efficient method in optimal PID tuning and on-line tuning [J]. Dynamics of Continuous Discrete and Impulsive Systems-Series B-Applications & Algorithms, 2006, 13: 785-9.
[33] GAO F, TONG H. Particle swarm optimization: An efficient method for tracing periodic orbits and controlling chaos [J]. Dynamics of Continuous Discrete and Impulsive Systems-Series B-Applications & Algorithms, 2006, 13: 780-4.